首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4131篇
  免费   834篇
  国内免费   389篇
化学   2821篇
晶体学   38篇
力学   273篇
综合类   56篇
数学   495篇
物理学   1671篇
  2024年   4篇
  2023年   91篇
  2022年   99篇
  2021年   161篇
  2020年   208篇
  2019年   188篇
  2018年   173篇
  2017年   137篇
  2016年   223篇
  2015年   215篇
  2014年   274篇
  2013年   358篇
  2012年   384篇
  2011年   359篇
  2010年   280篇
  2009年   213篇
  2008年   254篇
  2007年   246篇
  2006年   202篇
  2005年   169篇
  2004年   113篇
  2003年   114篇
  2002年   95篇
  2001年   91篇
  2000年   84篇
  1999年   116篇
  1998年   70篇
  1997年   83篇
  1996年   68篇
  1995年   66篇
  1994年   49篇
  1993年   45篇
  1992年   27篇
  1991年   27篇
  1990年   19篇
  1989年   10篇
  1988年   5篇
  1987年   5篇
  1986年   13篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1957年   3篇
排序方式: 共有5354条查询结果,搜索用时 15 毫秒
41.
Two novel unsymmetrical Ir(III) complexes [Ir(ppy)2(N N)Cl2] (N N=2-(pyrazin-2-yl)naphtha[1,2-e][1,2,4]triazine, Ir1 ; 2-(pyrazin-2-yl)-4b,4b’-dihydroaceanthryleno[1,2-e][1,2,4]triazine, Ir2 ) were developed as chemotherapy agents. Ir1 was mainly located in mitochondria. In contrast, Ir2 accumulated in mitochondria but subsequently migrated to the nucleus. Ir1 and Ir2 showed cytotoxicity toward cancerous cells, especially the cisplatin-resistant ones, indicating their ability to overcome cisplatin resistance. Although both Ir1 and Ir2 disrupted mitochondrial metabolism, they showed different cell death mechanisms. Ir1 induced mitochondria-mediated apoptosis in cisplatin-resistant A549R cells. Ir2 was demonstrated to cause PARP-1 activated necroptosis in A549R cells. This study provides an experimental basis for the rational design of metal-based chemotherapeutic drugs.  相似文献   
42.
本文报导了在前人基础上改进的碳酸盐岩(白云石-方解石)地质样品钙同位素化学分离方案。通过对比云南永善桧溪剖面白云岩-灰岩过渡岩性在不同浓度盐酸下淋洗结果,确定了4N浓度盐酸能有效富集白云石-方解石体系中的钙元素,且热电离质谱(TIMS)测试结果显示4N盐酸与1.6N盐酸淋洗方案处理后钙同位素测试结果一致,表明在相同测试精度的情况下,针对白云石-方解石体系下碳酸盐岩地质样品化学分离方案能提高化学分离效率。本文进一步结合青藏高原研究热点问题,对钙同位素在青藏高原地质样品的应用前景进行了分析,分析表明,钙同位素在青藏高原隆升前古海洋环境重建、隆升期构造活动恢复及隆升后火成岩来源示踪上具有广泛应用前景。  相似文献   
43.
Inserting polymers into a crystalline inorganic matrix to understand the structure, position, and the structure–property relationships of the resulting composites is important for designing new inorganic‐organic materials and tuning their properties. Single crystals of polymer‐chalcogenide composites were successfully prepared by trapping polyethyleneglycol within a selenidostannate matrix under surfactant‐thermal conditions. This work might provide a new strategy for preparing novel crystalline polymer‐inorganic composites through encapsulating polymer chains within inorganic matrices.  相似文献   
44.
Ordered open channels found in two‐dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks’ dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a strategy for converting a conventional 2D COF into an outstanding platform for carbon dioxide capture through channel‐wall functionalization. The dense layer structure enables the dense integration of functional groups on the channel walls, creating a new version of COFs with high capacity, reusability, selectivity, and separation productivity for flue gas. These results suggest that channel‐wall functional engineering could be a facile and powerful strategy to develop 2D COFs for high‐performance gas storage and separation.  相似文献   
45.
Conversion of biomass‐derived molecules involves catalytic reactions under harsh conditions in the liquid phase (e.g., temperatures of 250 °C and possibly under either acidic or basic conditions). Conventional oxide‐supported catalysts undergo pore structure collapse and surface area reduction leading to deactivation under these conditions. Here we demonstrate an approach to deposit graphitic carbon to protect the oxide surface. The heterogeneous catalysts supported on the graphitic carbon/oxide composite exhibit excellent stability (even under acidic conditions) for biomass conversion reactions.  相似文献   
46.
Lithium–sulfur batteries have been investigated as promising electrochemical‐energy storage systems owing to their high theoretical energy density. Sulfur‐based cathodes must not only be highly conductive to enhance the utilization of sulfur, but also effectively confine polysulfides to mitigate their dissolution. A new physical and chemical entrapment strategy is based on a highly efficient sulfur host, namely hollow carbon nanofibers (HCFs) filled with MnO2 nanosheets. Benefiting from both the HCFs and birnessite‐type MnO2 nanosheets, the MnO2@HCF hybrid host not only facilitates electron and ion transfer during the redox reactions, but also efficiently prevents polysulfide dissolution. With a high sulfur content of 71 wt % in the composite and an areal sulfur mass loading of 3.5 mg cm?2 in the electrode, the MnO2@HCF/S electrode delivered a specific capacity of 1161 mAh g?1 (4.1 mAh cm?2) at 0.05 C and maintained a stable cycling performance at 0.5 C over 300 cycles.  相似文献   
47.
Two patterns of signal amplification lateral flow immunoassay (LFIA), which used anti-mouse secondary antibody-linked gold nanoparticle (AuNP) for dual AuNP-LFIA were developed. Escherichia coli O157:H7 was selected as the model analyte. In the signal amplification direct LFIA method, anti-mouse secondary antibody-linked AuNP (anti-mouse-Ab-AuNP) was mixed with sample solution in an ELISA well, after which it was added to LFIA, which already contained anti-E. coli O157:H7 monoclonal antibody-AuNP (anti-E. coli O157:H7-mAb-AuNP) dispersed in the conjugate pad. Polyclonal antibody was the test line, and anti-mouse secondary antibody was the control line in nitrocellulose (NC) membrane. In the signal amplification indirect LFIA method, anti-mouse-Ab-AuNP was mixed with sample solution and anti-E. coli O157:H7-mAb-AuNP complex in ELISA well, creating a dual AuNP complex. This complex was added to LFIA, which had a polyclonal antibody as the test line and secondary antibody as the control line in NC membrane. The detection sensitivity of both LFIAs improved 100-fold and reached 1.14 × 103 CFU mL−1. The 28 nm and 45 nm AuNPs were demonstrated to be the optimal dual AuNP pairs. Signal amplification LFIA was perfectly applied to the detection of milk samples with E. coli O157:H7 via naked eye observation.  相似文献   
48.
Four ZnII/CdII coordination polymers (CPs) based on 2‐(4‐carboxy‐phenyl)imidazo[4, 5‐f]‐1, 10‐phenanthroline (HNCP) and different derivatives of 5‐R‐1, 3‐benzenedicarboxylate (5‐R‐1, 3‐BDC) (R = NO2, H, OH), [Zn(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 1 ), [Cd(HNCP)(5‐NO2‐1, 3‐BDC)]n ( 2 ), [Zn(HNCP)(1, 3‐BDC)(H2O)2]n ( 3 ), and {[Zn(HNCP)(5‐OH‐1, 3‐BDC)(H2O) · H2O}n ( 4 ) were synthesized under hydrothermal conditions. Compounds 1 – 4 were determined by elemental analyses, IR spectroscopy, and single‐crystal and powder X‐ray diffraction. Compounds 1 and 2 are isomorphous, presenting a 4‐connected uninodal (4, 4)‐sql 2D framework with threefold interpenetration, which are further extended into the three‐dimensional (3D) supramolecular architecture through π ··· π stacking interactions between the aryl rings of 5‐NO2‐1, 3‐BDC. Compared to compound 1 , 3 is obtained by using different reaction temperatures and metal‐ligand ratios, generating a 3D framework with –ABAB– fashion via π ··· π stacking interactions. Compound 4 is a 1D chain, which is further extended into a 3D supramolecular net by hydrogen bonds and π ··· π stacking interactions. The thermogravimetric and fluorescence properties of 1 – 4 were also explored.  相似文献   
49.
A base‐promoted three‐component coupling of carbon dioxide, amines, and N‐tosylhydrazones has been developed. The reaction is suggested to proceed via a carbocation intermediate and constitutes an efficient and versatile approach for the synthesis of a wide range of organic carbamates. The advantages of this method include the use of readily available substrates, excellent functional group tolerance, wide substrate scope, and a facile work‐up procedure.  相似文献   
50.
Photobiological hydrogen production is of great importance because of its promise for generating clean renewable energy. In nature, green algae cannot produce hydrogen as a result of the extreme sensitivity of hydrogenase to oxygen. However, we find that silicification‐induced green algae aggregates can achieve sustainable photobiological hydrogen production even under natural aerobic conditions. The core–shell structure of the green algae aggregates creates a balance between photosynthetic electron generation and hydrogenase activity, thus allowing the production of hydrogen. This finding provides a viable pathway for the solar‐driven splitting of water into hydrogen and oxygen to develop green energy alternatives by using rationally designed cell–material complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号